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Abstract

The acute effects of slow breathing exercises on the complex behaviour of heart rate regulation were
investigated. We evaluated 21 healthy male volunteers aged between 18 and 30 years old. Heart rate
variability was investigated 10 minutes during spontaneous breathing and five minutes during slower breathing
exercises (6 cycles/min). The consequent nonlinear metrics of heart rate variability were applied: Symbolic
analysis, Shannon Entropy, Rényi Entropy, Tsallis Entropy, Approximate Entropy, Sample Entropy and
Detrended Fluctuation Analysis. The symbolic exhibited an increase in two like variation and decrease in
two unlike variation. Detrended Fluctuation Analysis was significantly higher during slow breathing exercises
(0.6454±0.201 vs. 0.3949±0.205; p=0.0003). Approximate entropy was significantly lower during slow breathing
exercises (0.8620±0.121 vs. 0.7677±0.134; p=0.0221). No significant changes were detected for Shannon
Entropy, Rényi Entropy, Tsallis Entropy and Sample Entropy. In conclusion, slow breathing exercises decrease
nonlinear behaviour of heart rate dynamics in healthy young males followed by reduced vagal control of heart
rate dynamics. We propose that the linear behaviour of respiratory patterns influences the complexity of HRV.
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stimuli such as music, in response to postural
maneuvers (11) and during recovery from exercise
(12).

Some procedures have been undertaken such as
Poincaré plot, Tsallis Entropy and Rényi Entropy,
which could potent ial ly generate more robust
outcomes. More specifically, entropy relates to the
probability density function of a variable, when the
entropy decreases due to the sequence lengthening,
the system is predictable and highly regular,
indicating reduced complexity. In this way, high
entropy corresponds to unpredictable RR intervals
(13). Sample entropy and approximate entropy were
reported to offer an alternative measurement of
sympatho-vagal balance, since they both decreased
during sympathetic activation induced by the head-
up tilt test (14).

The analysis of nonlinear methods applied to HRV in
response to different breathing patterns has been
previously documented in exercise (15). It was found
that Detrended Fluctuation Analysis (DFA), sample
entropy and approximate entropy were significantly
influenced by respiratory patterns. Yet, the singular
effect of slow breathing exercise on different nonlinear
HRV metrics such as symbolic analysis is unclear.
Furthermore, an enhanced understanding of the
nonlinear dynamics of heart rate during slow breathing
would enable us to achieve novel mechanisms on
this intervention in the regions of cardiovascular and
behavioural impairment. In this sense, we theorized
that controlled slow breathing would reduce the
complexity of HRV, since it increases the linearity
of the respiratory pattern. Accordingly, this study
was commenced to evaluate the acute effects of slow
breathing exercises on nonlinear heart rate dynamics.

Materials and Methods

Study population

The subjects participating in the study were 21
healthy male students - all non-smokers, aged
20.35±1 years old, height 1.78±0.3 m, mass 76.5±16
kg and body mass index (BMI) of 22.4±4 m/kg2. All
subjects were informed about the procedures and
the objectives of the study and gave confidential

Introduction

Slow breathing has been considered as a behavioral
intervention and is widely applied for psychiatric
disorders, which includes stress-related disorders,
anxiety and depressive syndromes (1).

Cardiovascular and respiratory techniques including
the effects of slow breathing have been reported in
the research literature. Slow breathing exercise was
reported to improve cardiovascular disorders through
beneficial effects on the autonomic nervous system
(2).

So, autonomic regulation of heart rate may be
assessed through heart rate variability (HRV). HRV
evaluates the fluctuations of the intervals between
consecutive heart beats (RR intervals) (3). HRV is
widely assessed through linear time and frequency
domain indices (4). Nevertheless, linear analysis is
l im i t ing  s ince i t  prov ides on ly temporal  and
quantitative information about heart rate dynamics;
whilst nonlinear methods provide qualitative analysis
of the time series (5). In most cases, only some
measurable quant i t ies ,  which depend on the
underlying and usually unidentified dynamics of the
RR interval distribution are accessible, namely time
and f requency domain HRV analysis (6). The
qualitative analysis of nonlinear methods includes
predictability of RR intervals with extraordinary
sensitivity to initial conditions and do not consider
only the sequence of the signal.

Nonlinear methods are related to complexity theory
since they examine specific characteristics such as,
sensitivity to initial conditions and system parameter
variations. Moreover, chaotic systems have been
reported to be involved in groups of problems in
numerous areas of life, natural and engineering
sciences (6), including heart rate modulation (7).

The literature has demonstrated that changes in
complexity of heart rate dynamics are associated
with alterations in vagal and sympathetic regulation
of heart rate in postoperative complications in hip
fracture patients (8), depression (9) and diabetes
(10) .  Add i t iona l ly,  non l inear  HRV was  a lso
investigated in healthy subjects during physiological
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written informed consent. All study events were
approved by the Ethics Committee in Research of
our Institution (No. 2014-953), and were in accordance
with Resolution 196/96 National Health 10/10/1996.

Exclusion criteria

W e exc luded sub jec ts  ou ts ide the fo l lowing
conditions: Body Mass Index (BMI) >35 kg/m 2;
systol ic blood pressure (SBP) >140 mmHg or
diastolic blood pressure (DBP) >90 mmHg (at rest);
cardiovascular, respiratory, endocrine, anxiety and
reported neurological disorders that did not permit
the subjects to perform the procedures. Subjects
taking medication(s) that influenced the autonomic
nervous system were excluded.

Initial evaluation

Baseline and anthropometric data was recorded: age,
gender, mass, height and Body Mass Index (BMI).
Mass was determined using a digital scale (W 200/
5, Welmy, Sao Paulo, Brazil) with a precision of 0.1
kg. Height was determined using a stadiometer (ES
2020, Sanny, Sao Paulo, Brazil) with a precision of
0.1 cm and 220 cm of extension. BMI was calculated
as mass/height2, with mass in kilograms and height
in meters.

Slow breathing protocol

The experimental procedures were completed in the
same soundproofed room for all subjects. The relative
humidi ty ranged between 40% and 60% and
temperature ranged between 21°C and 25°C. Subjects
were instructed to have a decent sleep, with empty
bladder and stomach, without ingesting caffeine,
a lcoho l  o r  o ther  au tonom ic  nervous  sys tem
stimulants for 24 hours before the evaluation.
Datasets were collected on an individual basis
between 18:00 and 21:00 to standardize circadian
influences (16). All procedures necessary for the data
collection were explained to each subject individually,
and the subjects were told to remain at rest and
avoid conversation during the collection.

The slow breathing protocol was founded on research
literature which emphasized cycles with 10 to 12

seconds duration, hence a breathing rate of 5 to 6
cycles per minute (17). During this modus operandi
the subjects performed approximately 6 cycles per
minute with a frequency of 0.1 Hz for five minutes.
The investigator guided the volunteers’ breathing
patterns with a metronome. These volunteers were
instructed to perform deep, but slow inspirations,
and similar expirations with lung volumes ranging
from the total lung volume to residual volume, which
is the remaining volume after maximal expiration.

HRV analysis

The Polar® RS800CX heart rate device comprised of
an elastic band and two electrodes placed on the
participants’ chest, at the level of the xiphoid process
and just below the pectoralis. HRV was analysed
according to instructions from the Task Force
guidelines (17). RR intervals were recorded via a
digital telemetry system. A sampling rate of 1 kHz
was enforced wi th pr io r  val ida t ion and then
downloaded to the Polar Precision Performance
program (v.3.0, Polar Electro, Finland). This software
enabled the visualization of heart rate and the
extraction of RR interval. Consequent digital filtering
was complemented with manual filtering for the
elimination of premature ectopic beats and artefacts.
Only series with sinus rhythm greater than 95% were
included in the study.

Poincaré plot

For the visual analysis of the plot, an ellipse was
fitted to the points of the chart, with the centre
determined by the average RR interval.

The plot was qualitatively analysed by HRV analysis
software based on the figures formed by its attractor
(18, 19):  f igures in which an increase in the
dispersion of RR intervals is observed with increased
intervals, characteristic of a normal plot and small
figures with beat-to-beat global dispersion without
increased long-term dispersion of RR intervals.

Symbolic analysis

Symbolic analysis was performed by grouping the
patterns with 3 symbols into four families as follows:



Indian J Physiol Pharmacol 2018; 62(2) Slow Breathing and HRV 163

(a) no variation (0V: all the symbols are equal, i.e.
2,2,2 or 4,4,4); (b) one variation (1V: 2 consecutive
symbols are equal and the remaining symbol is
different, i.e. 4,2,2 or 4,4,3); (c) two like variations
(2LV: the  3  symbols  fo rm  an ascend ing or
descending ramp, i.e. 5,4,2 or 1,3,4); and (d) two
unlike variations (2UV: the three symbols form a
peak or a valley, i.e. 4,1,2 or 3,5,3). The rate of
occurrence for each pattern was defined as 0V%,
1V%, 2LV%, and 2ULV%. It has been observed that
0V% reflects only sympathetic modulation, 1V%
reflects sympathetic and parasympathetic modulation,
2LV% and 2ULV% ref lec t ,  exc lus ively,  vagal
modulation (19).

Nonlinear analysis

Nonlinear analysis included Shannon Entropy, Rényi
Entropy, Tsallis Entropy, Approximate Entropy,
Sample Entropy and Detrended Fluctuation Analysis
(DFA) (20).

Statistical analysis

Parametric statistics usually assume the data are
normally distributed, hence the use of the mean as
a measure of central tendancy. If we cannot normalise
the data we should not compare means. To test our
assumptions of normality we applied the Anderson-
Darling and Ryan-Joiner tests. The Anderson–Darling
test applied an empirical cumulative distribution
function, whereas the Ryan-Joiner test is a correlation
based test similar to Shapiro-Wilk test. Since the
results were inconclusive we are unable to confirm
the observations present a normal distribution.
Consequently we have a probability plot of both

normal and non-normal data and we apply both the
one-way analysis of variance (ANOVA1) and the
Kruskal-Wallis - the parametric and non-paramertric
tests of significance respectively.

Principal Component Analysis (PCA) is a multivariate
statistical procedure where the random observations
are transformed into a smaller set of uncorrelated
variables called Principal Components.

Effect size

In order to quantify the magnitude of differences
between spontaneous and during slow breathing we
used Cohen’s guidelines of small (0.25), medium
(0.5), and large (0.9) effects.

Results

Figs. 1 and 2 illustrate symbolic analysis of HRV at
spontaneous breathing and during slow breathing
exercise. We observed reduced 2LV and increased
2UV during slow breathing exercise in both absolute
units and percentage values.

The results illustrate that there is a wide variation in
both the mean values for both normal breathing and
slow breathing (Table I). The p-values calculated are
the ANOVA1 and Kruskal-Wallis parameters. The
algorithm calculates a significant statistical result
for two of the six combinations with the probability
of a type I error was less than 5% (p<0.05). For
ApEn the slow breathing exhibited a decrease in the
output whereas with DFA there was an increase.
This is to be expected since DFA responds in the

TABLE I : The table below shows the mean values for the five entropic measures for control and slow breathing subjects
RR intervals. The number of RR intervals is 256. ANOVA1 and Kruskal-Wallis tests of significance was applied to
results. Notice here the DFA is included with the five measures of entropy as a benchmark.

Entropy Type & DFA Mean±SD Mean±SD ANOVA1 Kruskal-Wallis Cohen’s Effect size
Normal Breathing (n=21) Slow Breathing (n=21) (p-value) (p-value)

Approximate 0.8620±0.121 0.7677±0.134 0.0216 0.0221 0.73 Medium
Sample 0.7235±0.141 0.7426±0.144 0.6672 0.5973 0.13 Small
DFA 0.3949±0.205 0.6454±0.201 0.0003 0.0003 1.23 Large
Shannon 0.7742±0.126 0.7542±0.123 0.6044 0.6327 0.16 Small
Renyi (=0.25) 0.9919±0.005 0.9910±0.005 0.5665 0.6507 0.18 Small
Tsallis (q=0.25) 0.7981±0.113 0.7797±0.111 0.5973 0.6507 0.16 Small

(DFA) Detrended Fluctuation Analysis; (SD) Standard Deviation.
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Fig. 1 : Symbolic analysis of HRV at spontaneous breathing and during slow breathing exercise in number of occurrences.
(0V, Cohen’s: 0.07; small effect size) three identical symbols; (1V, Cohen’s: 0.294, small effect size) two identical
one dissimilar symbols; (2LV, Cohen’s: 0.842, medium effect size) three dissimilar symbols varying monotonically;
(2UV, Cohen’s: 1.33, large effect size) three dissimilar symbols varying non monotonically; (abs) number of occurrences.

Fig. 2 : Symbolic analysis of HRV at spontaneous breathing and during slow breathing exercise in percentage. (0V, Cohen’s:
0, small effect size) three identical symbols; (1V, Cohen’s: 0.12, small effect size) two identical one dissimilar
symbols; (2LV, Cohen’s: 0.91, large effect size) three dissimilar symbols varying monotonically; (2UV, Cohen’s: 1.48,
large effect size) three dissimilar symbols varying non monotonically; (%) percentage.



Indian J Physiol Pharmacol 2018; 62(2) Slow Breathing and HRV 165

contradictory way to entropies. Regarding DFA an
increased parametric response is generated by a
decrease in chaotic response. It is usual to subtract
the value f rom unity and make the stat is t ics
analogous, hence (1-DFA). This is also the case
with spectral  Detrended Fluc tuat ion Analys is
(sDFA).

We had the values of five groups (all entropies except
DFA) for 21 subjects who are slow breathing subjects,
hence a grid of 5-by-21 to be evaluated. The First
Pr inc ipa l  Com ponent  (PC1)  had a  var iance
(eigenvalue) of 3.8159 and accounted for 76.3% of
the total variance. The Second Principal Component
(PC2) had an eigenvalue of 0.8842 and summed with
PC1 accounted for 94.0% of total variance. PC2 had
a proportion of influence of 17.7%. The Third Principal
Component (PC3) had an eigenvalue of 0.2960 and
summed with PC1 and PC2 accounted for 99.9% of
total variance. PC3 had a proportion of influence of
5.9%. Therefore we assumed that most variance was
attained in the first three principal components, so

a slightly steep scree plot.

In view of the principal components we observe that
the Shannon, Rényi (=0.25) and Tsallis (q=0.25)
entropies have very similar PC1, PC2 and PC3.
W hereas, the ApEn and Sample entropy are
correspondingly grouped with similar PC1, PC2 and
PC3. Most of the variance is attained within the first
three components and so we need not deliberate
fourth (PC4) or fifth (PC5) principal components cited
in Table II. We then represent the HRV data using
the first three principal components corresponding
to the most significant eigenvectors.

Fig. 3 displays the boxplots of nonlinear HRV
analysis, indicating entropies and DFA during slow
breathing.

Fig. 4 displays an example of the Poincaré plot
patterns from one subject during spontaneous
breathing and during slow breathing. We detected
no visual difference between the two conditions.

Fig. 3 : The box plots illustrate six HRV measurements for the 256 RR intervals of 21 normal breathing subjects (left) and 21 slow
breathing subjects (right). The point closest to zero is the minimum and the point farthest away is the maximum. The point
second closest to the zero is the 5th percentile and the point second farthest away is the 95th percentile. The boundary
of the box closest to zero indicates the 25th percentile, a line within the box marks the median (not the mean), and the
boundary of the box farthest from zero indicates the 75th percentile. The distance between the outer edges of the boxes
represents the interquartile ranges. Whiskers (or error bars) above and below the box indicate the 90th and 10th percentiles.
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Fig. 4 : Visual pattern of the Poincaré plot observed in one subject during spontaneous breathing and during slow breathing.

TABLE II : The table below is the Principal Component Analysis for
five groups of entropy for 21 subjects who are slow
breathing subjects (experimental dataset with n=21).

Entropic parameters PC1 PC2 PC3 PC4 PC5

Approximate 0.335 –0.725 –0.602 –0.012 <0.001

Sample 0.405 –0.466  0.787 –0.010 –0.001

Shannon 0.490  0.301 –0.080 –0.478 –0.659

Rényi =0.25 0.493  0.279 –0.078  0.816 –0.088
Tsallis q=0.25 0.491  0.298 –0.079 –0.325  0.747

PC1 represents the First Principal Component, PC2 the
Second; until the fifth component PC5. For Rényi and
Tsallis entropy the values of entropic order (=0.25) and
entropic index (q=0.25). For Approximate entropy and
Sample entropy (m=2; r=0.2 of Standard Deviation). Notice
we do not include DFA in the PCA since we are only
comparing entropies which respond in the same way akin
to increasing chaos; by increasing response.

Discussion

We aimed to investigate the complex behaviour of
heart rate autonomic regulation during slow breathing
exercise in healthy young men. W e detected
decreased complex behaviour of HRV through
symbolic analysis, entropies and DFA during slow
breathing.

Different methods have been established to identify
the nonlinear dynamics of heart rate, each approach
is facilitated in specific ways. The Poincaré plot
considers consecutive RR intervals and provides a
graphic with dispersion of the points indicating
whether it is more or less linear (19). The symbolic
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analysis divides RR intervals into symbols and
evaluates the repetition of those symbols (15). The
entropies perform mathematical calculations to
evaluate the predictabil ity of the RR intervals
repetition (6). DFA assesses the self-similarity of
RR intervals distribution (21).

All approaches stated above provide balancing
information for the traditional HRV methods, including
time and frequency domain indices. The linear
methods have quantitative characteristics indicating
increase or decrease in the parasympathetic or
sympathetic regulation of heart rate whilst the
nonlinear methods indicate the self -s imilar i ty,
predictability and repetition rate of RR intervals (14).

So,  symbol ic  analys is  of  HRV indicated that
sympathetic and vagal inf luence on heart beat
represented by 2LV was h igher and that  the
parasympathetic component of heart rate control
represented by 2UV (21) was decreased during slow
breathing exercise. This response is explained by
the act iva t ion  of  the  both sym pathet ic  and
parasympathetic subdivisions (23).

Formerly, slow breathing associated with HRV
biofeedback was reported to reduce arousal induced
by traumatic situations and decrease anxiety levels
(24). Traditional analysis of linear indices of HRV in
the frequency domain indicated that musicians who
performed a single session of slow breathing
presented an increase in the parasympathetic
component of heart rate modulation while it decreased
the sympathetic component, signifying higher levels
of parasympathetic influence on heart rate under
stress. The parasympathetic activation through slow
breathing was suggested to allow subjects to better
modulate phys io logical  arousal  before music
presentation and to improve their performance (25).

The effects of slow breathing on the autonomic
nervous sys tem  is  due to  in f luences  on
mechanosensitive sensory nerve endings in the walls
of the carotid sinuses. Baroreceptors are deactivated
when arterial pressure increases and compress the
carotid wall, sending afferent nerve impulses into the
central nervous system that reflexively increase
parasympathetic outflow and decrease sympathetic

outflow, leading to bradycardia. In reverse, the
baroreceptors cessation of firing after blood pressure
falls, inducing tachycardic reflex (26).

According to our discoveries, ApEn was significantly
reduced during slow breathing. It can be observed
as an approximation of the differential entropy rate
of a process. ApEn estimates the entropic rate of
RR intervals, this component gradually decreased
during activation of the sympathetic activity through
head-up tilt test. Consequently, ApEn is associated
with sympatho-vagal balance (27). Together, the
behaviour of ApEn in our study implies a reduced
complex behaviour of HRV during slow breathing
exercise. Yet, sample entropy was not significantly
altered during slow breathing. Sample entropy was
originally established to improve ApEn.

We reported that DFA was significantly greater during
slow breathing exercise, indicat ing decreased
complex responses of heart rate dynamics.

The physiological interpretation of nonlinear approach
to analysis HRV is evidenced in previous studies
(27, 28). Turianikova et al (27) evaluated the
complexity of RR intervals during orthostatic challenge
in 28 healthy subjects (mean age: 20.4 years old).
The authors  observed that  reduc t ion  of  the
parasympathetic regulation of heart rate was trailed
by decrease in the complexity of heart beat signals
fluctuations. The well-designed study by Tulppo et
a l  (21)  theor ized tha t  dec reased com plex
organization of heart rate dynamics is associated
with sympathetic and vagal activation induced by
cold face immersion in healthy subjects. As a key
result they stated that reduced nonlinearity of short
term  HRV was  noted dur ing  coac t iva t ion  o f
sympathetic and vagal outflow. In this case, we
suggest that this response was attr ibutable to
sympathetic activation during respiratory sinus
arrhythmia (25).

A recent study performed by Silva et al (28) facilitated
a bet te r  unders tand ing o f  the  phys io log ica l
interpretation of DFA. It was reported that when -
receptors were blocked the RR intervals tended to
be randomised whereas when muscarinic receptors
were blocked to inhibit parasympathetic activity the
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correlation property of RR intervals ceased to be
associated by a power law.

Earlier, studies investigated the effects of different
breathing patterns on HRV. Slow breathing was
reported to be authoritative in heart rate dynamical
fluctuations similar to respiratory sinus arrhythmia
during meditation (29).

Another study examined breathing patterns and
compared the effect of light exercise on nonlinear
HRV (14). Male subjects were assessed during
voluntary breathing, and metronomic guided breathing
at 0.1 Hz (6 cycles/min), 0.2 Hz (12 cycles/min)
and 0.4 Hz (24 cycles/min), undergoing light intensity
cycling. While the significant effects of slow breathing
on heart rate were not observed, DFA was strongly
elevated and ApEn and sample entropy were lowered
during slow breathing. This was supported by our
data in this study.

Thus, the breathing pattern is a vital point to be
addressed when investigating slow breathing effects
on heart rate regulation. Volterra-Wiener series
method was applied to RR intervals and it was
conveyed that paced breathing reduced the non-linear
behaviour of HRV compared to spontaneous breathing
at a rate of 10 cycles/min (around 0.17 Hz), a
breathing pattern greater than the one used in this
study. It is imperative to realise that higher respiratory
rates decreases linear behaviour of HRV (30), which
enforces the difference between the mentioned study
and our conclusions.

The aforesaid results and our findings here suggest
that heart rate dynamics are more predictable during
slow breathing due to linearity of respiratory pattern.

Although the quantitative analysis of nonlinear heart
rate dynamics indicated that its complex behaviour
decreases during slow breathing, the Poincaré plot
did not support the quantitative analysis. The
Poincaré plot is a simple technique used as a
geometrical analysis by fitting an ellipse to the shape
of the Poincaré plot in order to calculate HRV
indices. In 2001, Brennan et al (30) performed
techniques in order to investigate the nonlinear
property of the Poincaré analysis. The authors

converted a two-dimensional plot into several one-
dimensional views, and the fitting of an ellipse to the
plot shape and measuring the correlation coefficient
of the plot. The study demonstrated that this method
was insensitive to the nonlinearity of the intervals. In
this sense, we believe that the Poincaré plot was
not sensitive to detect changes which the DFA,
symbolic analysis and entropy identified in HRV
during slow breathing.

The foremost conclusion deduced from this study
was that slow breathing decreased the chaotic
behaviour of heart rate dynamics. Under these
circumstances, the most relevant features of a chaotic
system includes its deterministic profile, directing
its behaviour and exhibiting high sensitivity to initial
conditions. For example, a modest variation in the
starting points may lead to significantly different
outcomes, which are not random. Chaotic systems
present a sense of order and pattern, which are
unrepeatable (22).

The complex behaviour of HRV has received much
attention. It was recently discussed in the review
from the European Society of Cardiology together
with the European Heart Rhythm Association and
co-endorsed by the Asia Pacif ic Heart Rhythm
Society (14).

Thus, we highlight nonlinear analysis of HRV as
important for providing information with respect to
the complex dynamics of RR intervals variability. This
is appropriate to better understand physiological
heart rate control mechanisms. Moreover, a benefit
of  nonl inear analysis inc ludes i ts  quali ta t ive ,
correlation and scaling properties in the evaluation
of the RR intervals. Likewise, the traditional linear
indices of HRV in the time and frequency domains
provide quantitative analysis of HRV (5).

Conclusion

Slow breathing exercises acutely decreases nonlinear
behaviour of heart rate dynamics in healthy young
men analysed through DFA and various entropies.
W e suggest that the l inear respiratory pattern
influences the complexity of HRV through increasing
its predictability.
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